A Catalan Transform and Related Transformations on Integer Sequences

نویسنده

  • Paul Barry
چکیده

We introduce and study an invertible transformation on integer sequences related to the Catalan numbers. Transformation pairs are identified among classical sequences. A closely related transformation which we call the generalized Ballot transform is also studied, along with associated transformations. Results concerning the Fibonacci, Jacobsthal and Pell numbers are derived. Finally, we derive results about combined transformations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Catalan Numbers and Generalized Hankel Transformations

so that an is the sum of the n th and n + 1 Catalan numbers. Then the Hankel transform of {a0, a1, a2, . . .} begins 2, 5, 13, 34, . . .. Layman first conjectured in the On-Line Encyclopedia of Integer Sequences ([4], see sequence A001906) that this sequence consists of every other Fibonacci number, and subsequently Cvetković, Rajković and Ivković [2] proved this conjecture. The current paper a...

متن کامل

On the Hurwitz Transform of Sequences

Given a sequence an, we denote by hn the general term of the sequence with hn = |ai+j|0≤i,j≤n. The sequence hn is called the Hankel transform of an [19, 20, 21]. This sequence of Hankel determinants has attracted much attention of late amongst those working in the area of integer and polynomial sequences in particular [7, 18, 24, 32]. In this note we shall introduce the notion of a related Hurw...

متن کامل

A Study of Integer Sequences, Riordan Arrays, Pascal-like Arrays and Hankel Transforms

We study integer sequences and transforms that operate on them. Many of these transforms are defined by triangular arrays of integers, with a particular focus on Riordan arrays and Pascal-like arrays. In order to explore the structure of these transforms, use is made of methods coming from the theory of continued fractions, hypergeometric functions, orthogonal polynomials and most importantly f...

متن کامل

Notes on a Family of Riordan Arrays and Associated Integer Hankel Transforms

In this note we explore the properties of a simply defined family of Riordan arrays [9]. The inverses of these arrays are closely related to well-known Catalan-defined matrices. This motivates us to study the Hankel transforms [6] of the images of some well-known families of sequences under the inverse matrices. This follows a general principle which states that the Hankel transform of the imag...

متن کامل

Fixed Sequences for a Generalization of the Binomial Interpolated Operator and for some Other Operators

This paper is devoted to the study of eigen-sequences for some important operators acting on sequences. Using functional equations involving generating functions, we completely solve the problem of characterizing the fixed sequences for the Generalized Binomial operator. We give some applications to integer sequences. In particular we show how we can generate fixed sequences for Generalized Bin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005